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Note 

A Numerical Test of the Reliability 
of Galerkin Approximations to the 

Solutions of the Navier-Stokes Equation 

The method of Galerkin (for a general exposition see, for instance, Ref. [ 1]) is 
particularly attractive for the approximate solution of the Navier-Stokes equation 
since in principle the boundary conditions and the energy balance equation are 
exactly satisfied [2]. Also it is computationally efficient when used in conjunction 
with appropriate Fast Fourier Transform algorithms [3-51. In its present state, 
however, the method suffers from a serious weakness: given an externally applied 
force f(t, r) and the value of the viscosity coefftcient v we do not know how to choose 
the set of Fourier modes in order to guarantee a given accuracy. Worst, we are not 
even sure that the Galerkin approximation behaves qualitatively like the exact 
solution with same initial flow, that is, whether both tend to a steady, periodic, quasi- 
periodic, almost periodic (in the usual mathematical sense), or turbulent state as the 
time t-+ co. 

The purpose of this note is to propose a test which we believe can be used to 
decide a posteriori if the exact solution behaves like the numerically computed 
Galerkin approximation. The idea of the test came to us after learning of a 
remarkable property of the solutions of the Navier-Stokes equation which had been 
conjectured by Hopf in 1948 [6] and was made precise and rigorously demonstrated 
by Foias and Prodi in 1967 [7]. Roughly speaking this property is that in a certain 
sense these solutions become finite-dimensional as t -+ co. Further results on the 
subject were obtained by Ladyzhenskaya [8,9] (see also her review [lo]) and by 
Foias and Temam [ 11, 12). We shall begin with a brief expose of the works of these 
mathematicians which are relevant to our purpose. 

Consider the two-dimensional flow of an incompressible viscous fluid with unit 
density contained in a finite volume Q with rigid boundary 8.0 and governed by the 
Navier-Stokes equation. The velocity v(t, r) = (v,(t, r), u2(t, r)) and the pressure of 
the fluid are then determined by the equations 

av/at + (v * V)v = -vp + f(t, r) + vvv, 

v*v=o, 

the “no-slip” boundary condition 

(1.1) 

(1.2) 

V/an = 0, (1.3) 
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and some initial condition 
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v(O, r) = vg(r), (1.4) 

where r = (x,, x2), p is the pressure, f the external force, and v the viscosity coef- 
ficient that we assume constant. 

It is known that in a variety of appropriate function spaces and for a wide class of 
forces f and initial conditions v0 this problem has a unique and bounded solution 
defined for all times t > 0 (see, for instance, [lo]). 

The linear problem 

v2w + vq = -/lw, 

v.w=o, WI&J = 0, 

is known [lo] to uniquely determine both w  and q (up to an additive constant) in R 
and to possess a complete system of orthonormal eigenfunctions {wi} with positive 
eigenvalues 

Consider a particular solution v(t, r) of problem (1) and its 
in terms of the w’s 

V(t, r) = 2 C,(t) Wi(r), 

i=l 

where the modes ci are given by the scalar products 

Ci(t) = 
I 

V(t, r) - wi(r) G (v(t, r), wi(r)). 

n 

Let us break the infinite sum into two parts (from now on 
space dependence from the formulae) v = v’ f v”, where 

n a3 

Fourier representation 

we drop the time and 

v’ = c ciwi and V” = ~ CiWi, 

i=l i=n+l 

i.e., v’ is the projection 9,~ of v on the subspace E, spanned by w, , w2,..., w,, and v” 
is its projection 3,~ on the orthogonal complement of E,. 

Foias and Prodi have shown [7] that if n is so chosen that 

i n+l > (16/v2)C2, (2) 

where C is a certain constant, and if two solutions v, = v; + v;’ and v2 = v; + v; are 
such that 

f’z (vi - vi) = 0 
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then 

fim, (v, - vJ = 0. 

This means that if we consider all solutions whose projections Ynv = v’ are the 
same as t + co then they all tend to the same limit as t -+ co. In other words in the 
limit t -+ co there is only one solution with projection v’. Hence if we know v’ we can 
in principle reconstruct v. Suppose instead that we know only Y”,v with n’ < N, 
where N is the smallest n for which inequality (2) holds; then there may be many 
distinct solutions with the same projection Yn,v whose higher order modes ci, i > n’, 
behave in entirely different ways. 

Another important result of Foias and Prodi [7] is this: if in the limit t -+ co the 
projection LY,,v = v’, n > N, is stationary, periodic, quasi-periodic, or almost periodic, 
so is v, respectively. When v’ is stationary the property has been extended to the 
three-dimensional and time-independent (h/at = 0) Navier-Stokes equation by Foias 
and Temam [ 111. Although not proven yet, it is probable that the behavior of v is 
also the same as that of v’ when v’ is chaotic. 

These properties imply that if we knew the constant C in inequality (2) and 
therefore N, and if we could compute the first N modes ci of a particular solution, we 
would be guaranteed that the exact solution v behaves like its projection qVv. But 
again if we know only Y,,,v with n’ < N then v and Y,,v may behave in completely 
different ways. In practice we do not know how to calculate the modes ci. However, 
it has been shown that the sequence of Galerkin approximations converges strongly 
to the exact solution with respect to some appropriate norm (see, for instance, [lo] 
and refs therein). We can assume therefore that if v M) denotes the Galerkin approx- 
imation based on wl, We,..., wk then cl”’ = (@, wi)+ ci for all i’s as k-+ co. This 
suggests that for k large enough vck) (which is not equal to Ykv in general) behaves 
like the exact solution of the problem 

al’k’/at + (II (k) * V)dk’ = -VpCk) + ‘Pkf(& r) + lwU(k), 

v . “(k) = 0 7 U(k)(ao = 0, dk)(O r) = VCk)(O r) , ) . 

If in addition the projection of the force f on the orthogonal complement of E, 

9,f = : (f, Wi) 
i=Zl 

is negligible as compared to Ykf we can even expect that vck) behaves like the exact 
solution of problem (1) defined by the initial condition vO(r) = vck)(O, r). In his recent 
review of turbulent phenomena [ 131 Rabinovich has stated that this is indeed the case 
even when vck) has a continuous time-frequency spectrum but there is nothing to 
support this assertion in the work of Ladyzhenskaya [9] that he quoted in this 
connection. We have learned, however, that Foias and Temam [ 121 have just made 
the following important step regarding this question: 
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Let us write the ordinary differential equations for the modes in vector form as 

dcCk’/dt = G,(c’~‘), (3) 

where cck) = (c:~),..., k , ctk)) and assume that 

(a) k>N, 
(b) f(t, r) becomes independent of t as t -+ 03, i.e., f(t, r) --) fm(r), 

(c) Eq. (3) has a stable stationary solution cz’ with basin of attraction B, i.e., 

fi; cCk)(t) = cf$ for all ~‘~‘(0) E B, 

(d) in some sense LZkfoo is negligible as compared to Ykfm. 

Then the exact solution of problem (1) also tends to a stable stationary solution 
v,(r) for all initial vo(r) = C”= 1 cjk’(0) wi(r) such that ~‘~‘(0) E B. 

This result lends support to the conjecture that in general the Galerkin approx- 
imations vck) behave like the exact solutions with same initial data provided k > N 
and T,f(t, r) is negligible as compared to Ykf(& r). 

The value of N is determined from inequality (2) as soon as we know C2 which 
can be tak’en as any upper bound for the quantity 

P(v) = j (vv)* = j ((vu,)* + (vu,)‘) 
R R 

in the limit t + co. The best value which can be used for the determination of N is 
therefore the least upper bound of r*. Because a sharp a priori estimate of this 1.u.b. 
is difficult to obtain, we propose the following numerical test: 

Choose a k and evaluate r2(vck)) along as the ordinary differential equations for 
the modes cl”’ are integrated. After the initial transient of duration T, say, r2(vck)) 
will either tend to a constant if the asymptotic state is stationary or oscillate 
otherwise. In either case an upper bound pk for r2(vck)) can be determined for large 
times. Suppose that the following conditions are satisfied: 

tcl) Ak+, > (16/v*)f;, 

(C2) in some sense ?2,f(t, r) is negligible as compared to Ykf(t, r) for t > T. 

We can then conclude from the foregoing that the exact solution v(t, r) with initial 
flow ~(0, r) = ~(~~(0, r) certainly behaves like vtk). But if at least one of these 
conditions is not satisfied the behaviors of v and vck) may be entirely different and it 
is necessary to perform the test for increasing values of k until both conditions are 
satisfied. 

A word of caution is in order at this point: we have tacitly assumed that the force 
f(t, r) remains the same throughout the sequence of tests which may have to be 
performed. If instead f is determined through coupling with other equations as in 
convection or MHD problems different forces fk will be generated for each value of k. 
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In such cases a successful test for k > k,, say, only means that the exact solution of 
the Navier-Stokes equation driven by the particular force fk behaves like the Galerkin 
approximation vck); it certainly does not mean that the exact solution of the complete 
system of partial differential equations behaves like its Galerkin approximation, 
unless there are good reasons to believe that fk and the other variables are closely 
approximated. In all rigor a reliable test for such systems can be devised only if and 
when the theory presented above is extended to them. We feel nevertheless that the 
results of performing the test described above on Navier-Stokes equations coupled 
with other equations may be useful for the extension of the theory. 

Finally we want to make the following remarks: 

(a) In deriving inequality (2) Foias and Prodi were primarily interested in showing 
the finite-dimensionality of the solutions for large times. They did not try to get the 
best possible estimate for the numerical factor multiplying the ratio C*/v*. Thus the 
value 16 that they indicated is probably much larger than is necessary for their result 
to hold. C. Foias has told us that he can derive a better estimate for this factor. 

(b) The condition (C2) that -Pkf(t, r) be much smaller than Yk f(t, r) needs to be 
formalized in a manner consistent with the latest results of Foias and Temam quoted 
above. 

(c) We have tacitly assumed throughout our expose that in the limit t -+ co the 
exact solution of the Navier-Stokes equation is structurally stable in the sense that 
small changes in the initial flow and in the force do not affect its ultimate charac- 
teristics. 

We will report on these questions later as further results become available. 
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